112 research outputs found

    Poisson actions up to homotopy and their quantization

    Full text link
    Symmetries of Poisson manifolds are in general quantized just to symmetries up to homotopy of the quantized algebra of functions. It is therefore interesting to study symmetries up to homotopy of Poisson manifolds. We notice that they are equivalent to Poisson principal bundles and describe their quantization to symmetries up to homotopy of the quantized algebras of functions.Comment: 8 page

    Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system

    Full text link
    The Mishchenko-Fomenko theorem on superintegrable Hamiltonian systems is generalized to superintegrable Hamiltonian systems with noncompact invariant submanifolds. It is formulated in the case of globally superintegrable Hamiltonian systems which admit global generalized action-angle coordinates. The well known Kepler system falls into two different globally superintegrable systems with compact and noncompact invariant submanifolds.Comment: 23 page

    Jacobi Structures in R3\mathbb{R}^3

    Full text link
    The most general Jacobi brackets in R3\mathbb{R}^3 are constructed after solving the equations imposed by the Jacobi identity. Two classes of Jacobi brackets were identified, according to the rank of the Jacobi structures. The associated Hamiltonian vector fields are also constructed

    Generalized n-Poisson brackets on a symplectic manifold

    Full text link
    On a symplectic manifold a family of generalized Poisson brackets associated with powers of the symplectic form is studied. The extreme cases are related to the Hamiltonian and Liouville dynamics. It is shown that the Dirac brackets can be obtained in a similar way.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.

    Poisson sigma models and symplectic groupoids

    Full text link
    We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the Hamiltonian formalism. The phase space is the space of leaves of a Hamiltonian foliation and has a natural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Poisson manifold. We study various families of examples. In particular, a global symplectic groupoid for a general class of two-dimensional Poisson domains is constructed.Comment: 34 page

    Coupling Poisson and Jacobi structures on foliated manifolds

    Full text link
    Let M be a differentiable manifold endowed with a foliation F. A Poisson structure P on M is F-coupling if the image of the annihilator of TF by the sharp-morphism defined by P is a normal bundle of the foliation F. This notion extends Sternberg's coupling symplectic form of a particle in a Yang-Mills field. In the present paper we extend Vorobiev's theory of coupling Poisson structures from fiber bundles to foliations and give simpler proofs of Vorobiev's existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. Then we discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.Comment: LateX, 38 page

    Nonholonomic systems with symmetry allowing a conformally symplectic reduction

    Full text link
    Non-holonomic mechanical systems can be described by a degenerate almost-Poisson structure (dropping the Jacobi identity) in the constrained space. If enough symmetries transversal to the constraints are present, the system reduces to a nondegenerate almost-Poisson structure on a ``compressed'' space. Here we show, in the simplest non-holonomic systems, that in favorable circumnstances the compressed system is conformally symplectic, although the ``non-compressed'' constrained system never admits a Jacobi structure (in the sense of Marle et al.).Comment: 8 pages. A slight edition of the version to appear in Proceedings of HAMSYS 200

    Geometrical aspects of integrable systems

    Full text link
    We review some basic theorems on integrability of Hamiltonian systems, namely the Liouville-Arnold theorem on complete integrability, the Nekhoroshev theorem on partial integrability and the Mishchenko-Fomenko theorem on noncommutative integrability, and for each of them we give a version suitable for the noncompact case. We give a possible global version of the previous local results, under certain topological hypotheses on the base space. It turns out that locally affine structures arise naturally in this setting.Comment: It will appear on International Journal of Geometric Methods in Modern Physics vol.5 n.3 (May 2008) issu

    Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds

    Full text link
    The obstruction to the existence of global action-angle coordinates of Abelian and noncommutative (non-Abelian) completely integrable systems with compact invariant submanifolds has been studied. We extend this analysis to the case of noncompact invariant submanifolds.Comment: 13 pages, to be published in J. Math. Phys. (2007

    Poisson Geometry in Constrained Systems

    Full text link
    Constrained Hamiltonian systems fall into the realm of presymplectic geometry. We show, however, that also Poisson geometry is of use in this context. For the case that the constraints form a closed algebra, there are two natural Poisson manifolds associated to the system, forming a symplectic dual pair with respect to the original, unconstrained phase space. We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a symplectic leaf in one of those. In the second class case the original constrained system may be reformulated equivalently as an abelian first class system in an extended phase space by these methods. Inspired by the relation of the Dirac bracket of a general second class constrained system to the original unconstrained phase space, we address the question of whether a regular Poisson manifold permits a leafwise symplectic embedding into a symplectic manifold. Necessary and sufficient for this is the vanishing of the characteristic form-class of the Poisson tensor, a certain element of the third relative cohomology.Comment: 41 pages, more detailed abstract in paper; v2: minor corrections and an additional referenc
    corecore